
Optimizing Convolutional Neural Networks for

Text Analysis

Madison Jordan

California State University, Fullerton

email: madisonjordan@csu.fullerton.edu

Abstract

Deep Learning Neural Networks simulate

neurobiological features that allow learning

new concepts through comparison and

differentiation to form weighted connections

between them through processing

information and building an understanding

over time, much like a human would [1].

Programming machines to automate more

tasks, which can be performed faster or

cheaper than the same task performed by a

human. With further development, this

would allow for more accurate machine

translations, object or handwriting

recognition, as well as the sentiment

analysis of text or similar text classification

task.

At the time of this writing, machine learning

is not able to perfectly replicate the level of

sophistication the ability of the human brain

to efficiently learn at a finer granularity and

perceive subtle distinctions; development

evolutionary algorithms that might allow

machines to more closely mimic human

learning are still in their infancy stage. This

paper focuses on methods machine learning

models use to sufficiently emulate neurons

and the forming of pathways through

optimization in performing better in

classification or regression tasks upon image

and text datasets, which will be further

modified for research upon improving

accuracy in a pre-trained model for

specialized text analysis tasks.

I. Introduction

A. Background

One of the main tasks of machine learning is

to generalize previously acquired

information, apply that understanding to

new information and accurately identify or

categorize the concept in a more efficient

manner than could be performed by humans

[2] Depending on the intended use of the

task, an improvement might not be limited

only increased accuracy; it be a tradeoff

between accuracy, time, or cost – which may

include hardware limitations.

Convolutional Neural Networks (CNN) are

classification algorithms that learn from

labeled datasets to be able to classify similar

data as the correct label; this understanding

is built through a collection of “neurons”

formed into layers to learn the

distinguishing features of the concept it is

learning [3, 4]. As the model learns, the

weights of the features learned in the feature

map, or kernel, are adjusted with each data

point seen to create the “bias” on which the

model will use to assign labels to unseen

data. [1, 3]

The advantage in convolutional neural

networks for deep learning that allow a

network to require less space for parameters

due to its properties of parameter sharing,

sparse connections, and equivariance [1].

Unlike in the use of fully connected layers

which do not have sparse connections, every

input does not directly influence every

output as represented by arrows in Figure 1,

as illustrated in [1, Figure 9.14]. Parameter

sharing allows the weight of one input to be

shared among the other inputs in the

network, which allows the property of

equivariance, where the change in one input

will have an effect on the output [1, 3].

Figure 1. Comparison of local connected layers,

convoluted layer, and fully connected layers, as

illustrated in [1, Figure 9.14]

B. Object Recognition in Images

Convolutional Neural Networks allow the

recognition of images or text even after small

translations in the input, a property called

invariance, using methods such as pooling,

which might not otherwise be accurately

identified when using other machine

learning algorithms [1, 4]. This makes it

useful in practical applications with datasets

in which images might be at varying angles

depending on the angle the camera was

pointed at the time the subject was captured.

[4]

Figure 2. Example of learned invariances in

handwriting analysis, as illustrated in [1, Figure 9.9]

C. Sentiment Analysis in Text

As mentioned in [4], the use of convolution

with pooling works better with image

recognition than it does with analyzing the

meaning of sequences of words, where the

location of the word in the sentence would

have impact on the meaning, whereas in a

picture a single pixel, being in a slightly

different location might only mean it’s at an

angle rather than change the understanding

of the image itself. In [5], the use

Convolutional Neural Networks and Long

Short-Term Memory (LSTM) is shown to

improve the accuracy of text analysis when

determining the overall sentiment of reviews

on IMDB, which uses LSTM to train the

model to understand the differences in

meaning as a result of the sequences of the

words in the reviews.

II. Approach

Due to the relatively new research on

machine learning algorithms the constant

development of variations to mitigate

potential computational cost, such as the

ones detailed in [1], current models applied

to image or text analysis might be missing

optimizations detailed in recent deep

learning publications. These techniques may

be required to develop pre-trained models

that can perform better than publicly

available generalized models on more

specialized tasks, as shown in optimizations

of text sentiment analysis [5].

A. Convolutional Network Layer

A layer in a convolutional network goes

through three stages: a convolution stage,

detector stage, and a pooling stage.

Figure 3. example implementation of Convolutional

Neural Network layers, as illustrated in [1, Figure 9.7]

During the convolution stage, the layer

produces a set of linear activations through

convolutions; these activations are then each

passed to a nonlinear activation function. [1]

Finally, the pooling stage makes the model

invariant to small translations of the input,

allowing for more flexibility of whether a

feature is present rather than whether its

location precisely matches that of the

learned location from the training data. [1]

Figure 4. Basic Convolution Function. 𝒙 is the input,

while 𝒘 is the output, or kernel, as shown in [1, Figure

9.1 and 9.2]

B. LSTM

As a machine learns, it may forget some of its

gained understanding of a concept as it takes

in more information if older inputs are not

reintroduced, known as catastrophic

forgetting. [1] Recurrent neural networks

(RNNs) such as Long Short-Term Memory

(LSTMs) allow for the knowledge of previous

inputs to be kept which may have an effect

on the output [1, 5].

Due to the importance of the sequence or

order of words for understanding meaning,

LSTMs would allow for the model to more

accurately interpret the meaning of text from

the context, or meaning of preceding text,

rather than the limited context of the word it

is on.

Figure 5. LSTM state for time 𝒕 and cell 𝒊, where 𝒃 is

the bias, 𝑼 is the input weights, 𝑾 is the recurrent

weights. 𝒙(𝒕) is the current input vector, 𝒉(𝒕) is the

current hidden layer vector, which contains all the

outputs of all of the LSTM cells. 𝒇 is the forget gate

formula and 𝒈 is the output gate formula, as shown in

[1, Figure 10.41, 10.40, 10.42]

Figure 6. diagram of LSTM using forget gates to

regulate weights of previous inputs that are

reintroduced into the model, as illustrated in [1, Figure

10.16]

C. Optimization

Optimization in deep learning is intended to

be used to indirectly optimize a performance

measure indirectly through the reduction of

a cost function. [1]

Stochastic Gradient Descent (SGD) is the

most used optimization method in deep

learning. [1] SGD allows for the possibility

model to distinguish between concepts with

a large degree of accuracy without processing

all of the training data in large datasets,

“The most important property of SGD and

related minibatch or online gradient-based

optimization is that computation time per

update does not grow with the number of

training examples.” [1].

Figure 7. Algorithm for SGD, as shown in [1, Section

8.3]

D. Regularization

Regularization (parameter norm penalty)

allows parameters’ weight vectors to pull

closer to their true values by using penalty

functions to shrink the weight vectors,

known as weight decay, as the machine

trains. [1]

L2 regularization, also known as ridge

regression or Tikhonov regression, is the

most common form of regularization used. [1]

It allows the machine to penalize the weights

of features which seem to have a lower

impact on the output by allowing the

machine to perceive the input of the model to

have a higher variance and penalize any

inputs whose covariance with the output

target is low in comparison. [1]

L1 regularization assumes that some

parameter weights have an optimal value of

0, meaning they can be discarded as they

have no impact on the output, thereby

simplifying learning so that only the features

with the most impact can be selected. [1]

L2 Regularization

L1 Regularization

Figure 8. Regularization for in L2 and L1 , as shown in

[1, Section 7.1]

III. Implementation

Using a pre-labeled sarcasm dataset, I hope

to implement a model using convolutional

neural network combined with an LSTM, as

used in another text analysis dataset for

analyzing sentiment of reviews in IMDB [5].

By starting from the model used in the

previous text analysis study with an ReLU

activation function, L2 regulizer, and a

learning rate of 0.01 with decay, it might be

possible to produce reasonable results;

however, the impact of using the optimizer

RMSprop over Adam or SGD was minimal.

[5] These hyperparameter values, such as

the optimizer, would need to be adjusted to

find the optimal model to fit the dataset [1,5].

A. Example Implementation

Using Keras and Tensorflow on DirectML

with an AMD GPU, I followed a guide to

create an interactive webapp to compare the

different effects changes in hyperparameters

would have on the performance of a model

that used the Cifar10 image dataset. [6] The

visualization of the interactive web app

using the streamlit library used in the

example would help in determining which

adjustments to make to optimize the model.

IV. Conclusion

A. Current State

Progress on the sarcasm dataset itself has

not been made, but the problems I had over

the summer in getting Tensorflow to run at

all have made significant progress in

allowing me to move forward in

implementation, albeit in less than ideal

conditions for testing.

B. Next Steps

The first models for the sarcasm dataset

need to be implemented and analyzed. A

recent method for training models such as

Google’s BERT might help reach optimal

performance.

I will need to practice using the relevant

machine learning libraries for this type of

dataset and become familiar with the

different dependencies’ compatibility.

C. Challenges

After failing to get the Tensorflow machine

learning library running over the summer, I

discovered Tensorflow officially only

supports NVIDIA graphics cards using

CUDA. Due to lack of access to a computer

with a NVIDIA graphics card or to the

research lab at school, I had to find

workarounds to get the Tensorflow library to

work on any of the computers I have

available.

At the time of this writing, the AMD ROCm

implementation of Tensorflow is in early

development and has hardware limitations

and runs only on Linux. There were

difficulties in the running another

Tensorflow alternative PlaidML.

I found success in the recent release of

DirectML by Microsoft, which is still in early

development and does not support

Tensorflow 2 at this time.

Running code from examples which use

deprecated dependencies or those with new

package names has also been a challenge in

importing the necessary python libraries.

V. Acknowledgements

I’d like to thank my mentors Dr. Doina Bein

of California State University, Fullerton and

Dr. Abhishek Verma of New Jersey City

University for guiding me through this

material and creating realistic expectations

for myself in this program. I’d also like to

thank Dr. Brianna Blaser and Dr. Richard

Ladner of UW, as well as my family and

friends for encouraging me to apply to the

DREU this summer despite my hesitance.

Thank you to all the DREU organizers and

facilitators who were understanding during

this difficult time and openly accommodating

to support in any way they in which they

were able.

References

[1] I. Goodfellow, Y. Bengio and A.

Courville, Deep Learning. MIT Press, 2016,

Available: http://www.deeplearningbook.org.

[2] P. Domingos, "A few useful things to

know about machine learning",

Communications of the ACM, vol. 55, no. 10,

pp. 78-87, 2012. Available:

10.1145/2347736.2347755 [Accessed 6

August 2020].

[3] J. Wang, R. Turko, O. Shaikh, H. Park,

N. Das, F. Hohman, M. Kahng, and P. Chau,

“CNN Explainer,” Polo Club of Data

Science @ Georgia Tech: Human-Centered

AI, Deep Learning Interpretation &

Visualization, Cybersecurity, Large Graph

Visualization and Mining. [Online].

Available: https://poloclub.github.io/cnn-

explainer/

[4] A. Bhandare, M. Bhide, P. Gokhale and

R. Chandavarkar, "Applications of

Convolutional Neural Networks",

Api.semanticscholar.org, 2016. [Online].

Available:

https://api.semanticscholar.org/CorpusID:45

888197

[5] A. Yenter and A. Verma, “Deep CNN-

LSTM with Combined Kernels from

Multiple Branches for IMDb Review

Sentiment” presented at the 8th IEEE

Annual Ubiquitous Computing, Electronics

& Mobile Communication Conference

(UEMCON), Oct. 19-21, 2017, New York,

NY, USA. Available:

https://vermaabhi23.github.io/publication/2

017UEMCON1.pdf

[6] V. Alto, “Interactive Convolutional

Neural Network,” Medium, 28-Oct-2019.

[Online]. Available:

https://medium.com/dataseries/interactive-

convolutional-neural-network-

65bc19d8d698

http://www.deeplearningbook.org/
https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/
https://api.semanticscholar.org/CorpusID:45888197
https://api.semanticscholar.org/CorpusID:45888197
https://vermaabhi23.github.io/publication/2017UEMCON1.pdf
https://vermaabhi23.github.io/publication/2017UEMCON1.pdf
https://medium.com/dataseries/interactive-convolutional-neural-network-65bc19d8d698
https://medium.com/dataseries/interactive-convolutional-neural-network-65bc19d8d698
https://medium.com/dataseries/interactive-convolutional-neural-network-65bc19d8d698

	Abstract
	I. Introduction
	A. Background
	B. Object Recognition in Images
	C. Sentiment Analysis in Text

	II. Approach
	A. Convolutional Network Layer
	B. LSTM
	C. Optimization
	D. Regularization

	III. Implementation
	A. Example Implementation

	IV. Conclusion
	A. Current State
	B. Next Steps
	C. Challenges

	V. Acknowledgements
	References

