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Abstract 

Deep Learning Neural Networks simulate 

neurobiological features that allow learning 

new concepts through comparison and 

differentiation to form weighted connections 

between them through processing 

information and building an understanding 

over time, much like a human would [1]. 

Programming machines to automate more 

tasks, which can be performed faster or 

cheaper than the same task performed by a 

human. With further development, this 

would allow for more accurate machine 

translations, object or handwriting 

recognition, as well as the sentiment 

analysis of text or similar text classification 

task.  

At the time of this writing, machine learning 

is not able to perfectly replicate the level of 

sophistication the ability of the human brain 

to efficiently learn at a finer granularity and 

perceive subtle distinctions; development 

evolutionary algorithms that might allow 

machines to more closely mimic human 

learning are still in their infancy stage. This 

paper focuses on methods machine learning 

models use to sufficiently emulate neurons 

and the forming of pathways through 

optimization in performing better in 

classification or regression tasks upon image 

and text datasets, which will be further 

modified for research upon improving 

accuracy in a pre-trained model for 

specialized text analysis tasks. 

I. Introduction 

A. Background 

One of the main tasks of machine learning is 

to generalize previously acquired 

information, apply that understanding to 

new information and accurately identify or 

categorize the concept in a more efficient 

manner than could be performed by humans 

[2] Depending on the intended use of the 

task, an improvement might not be limited 

only increased accuracy; it be a tradeoff 

between accuracy, time, or cost – which may 

include hardware limitations.  

Convolutional Neural Networks (CNN) are 

classification algorithms that learn from 

labeled datasets to be able to classify similar 

data as the correct label; this understanding 

is built through a collection of “neurons” 

formed into layers to learn the 

distinguishing features of the concept it is 

learning [3, 4]. As the model learns, the 

weights of the features learned in the feature 

map, or kernel, are adjusted with each data 

point seen to create the “bias” on which the 

model will use to assign labels to unseen 

data. [1, 3] 

The advantage in convolutional neural 

networks for deep learning that allow a 

network to require less space for parameters 

due to its properties of parameter sharing, 

sparse connections, and equivariance [1]. 

Unlike in the use of fully connected layers 

which do not have sparse connections, every 



input does not directly influence every 

output as represented by arrows in Figure 1, 

as illustrated in [1, Figure 9.14]. Parameter 

sharing allows the weight of one input to be 

shared among the other inputs in the 

network, which allows the property of 

equivariance, where the change in one input 

will have an effect on the output [1, 3].  

 

Figure 1. Comparison of local connected layers, 

convoluted layer, and fully connected layers, as 

illustrated in [1, Figure 9.14] 

B. Object Recognition in Images 

Convolutional Neural Networks allow the 

recognition of images or text even after small 

translations in the input, a property called 

invariance, using methods such as pooling, 

which might not otherwise be accurately 

identified when using other machine 

learning algorithms [1, 4]. This makes it 

useful in practical applications with datasets 

in which images might be at varying angles 

depending on the angle the camera was 

pointed at the time the subject was captured. 

[4] 

 

Figure 2. Example of learned invariances in 

handwriting analysis, as illustrated in [1, Figure 9.9] 

C. Sentiment Analysis in Text 

As mentioned in [4], the use of convolution 

with pooling works better with image 

recognition than it does with analyzing the 

meaning of sequences of words, where the 

location of the word in the sentence would 

have impact on the meaning, whereas in a 

picture a single pixel, being in a slightly 

different location might only mean it’s at an 

angle rather than change the understanding 

of the image itself. In [5], the use 

Convolutional Neural Networks and Long 

Short-Term Memory (LSTM) is shown to 

improve the accuracy of text analysis when 

determining the overall sentiment of reviews 

on IMDB, which uses LSTM to train the 

model to understand the differences in 

meaning as a result of the sequences of the 

words in the reviews. 

II. Approach 

Due to the relatively new research on 

machine learning algorithms the constant 

development of variations to mitigate 

potential computational cost, such as the 

ones detailed in [1], current models applied 

to image or text analysis might be missing 

optimizations detailed in recent deep 

learning publications. These techniques may 

be required to develop pre-trained models 

that can perform better than publicly 



available generalized models on more 

specialized tasks, as shown in optimizations 

of text sentiment analysis [5]. 

A. Convolutional Network Layer 

A layer in a convolutional network goes 

through three stages: a convolution stage, 

detector stage, and a pooling stage. 

 

Figure 3. example implementation of Convolutional 

Neural Network layers, as illustrated in [1, Figure 9.7]  

During the convolution stage, the layer 

produces a set of linear activations through 

convolutions; these activations are then each 

passed to a nonlinear activation function. [1] 

Finally, the pooling stage makes the model 

invariant to small translations of the input, 

allowing for more flexibility of whether a 

feature is present rather than whether its 

location precisely matches that of the 

learned location from the training data. [1] 

 

 

Figure 4. Basic Convolution Function. 𝒙 is the input, 

while 𝒘 is the output, or kernel, as shown in [1, Figure 

9.1 and 9.2] 

B. LSTM 

As a machine learns, it may forget some of its 

gained understanding of a concept as it takes 

in more information if older inputs are not 

reintroduced, known as catastrophic 

forgetting. [1] Recurrent neural networks 

(RNNs) such as Long Short-Term Memory 

(LSTMs) allow for the knowledge of previous 

inputs to be kept which may have an effect 

on the output [1, 5]. 

Due to the importance of the sequence or 

order of words for understanding meaning, 

LSTMs would allow for the model to more 

accurately interpret the meaning of text from 

the context, or meaning of preceding text, 

rather than the limited context of the word it 

is on. 

 

 

 

Figure 5. LSTM state for time 𝒕 and cell 𝒊, where 𝒃 is 

the bias, 𝑼 is the input weights, 𝑾 is the recurrent 

weights. 𝒙(𝒕) is the current input vector, 𝒉(𝒕) is the 

current hidden layer vector, which contains all the 

outputs of all of the LSTM cells. 𝒇 is the forget gate 

formula and 𝒈 is the output gate formula, as shown in 

[1, Figure 10.41, 10.40, 10.42]  

 



 

Figure 6. diagram of LSTM using forget gates to 

regulate weights of previous inputs that are 

reintroduced into the model, as illustrated in [1, Figure 

10.16]  

C. Optimization 

Optimization in deep learning is intended to 

be used to indirectly optimize a performance 

measure indirectly through the reduction of 

a cost function. [1] 

Stochastic Gradient Descent (SGD) is the 

most used optimization method in deep 

learning. [1] SGD allows for the possibility 

model to distinguish between concepts with 

a large degree of accuracy without processing 

all of the training data in large datasets, 

“The most important property of SGD and 

related minibatch or online gradient-based 

optimization is that computation time per 

update does not grow with the number of 

training examples.” [1]. 

 

 

Figure 7. Algorithm for SGD, as shown in [1, Section 

8.3] 

D. Regularization 

Regularization (parameter norm penalty) 

allows parameters’ weight vectors to pull 

closer to their true values by using penalty 

functions to shrink the weight vectors, 

known as weight decay, as the machine 

trains. [1] 

L2 regularization, also known as ridge 

regression or Tikhonov regression, is the 

most common form of regularization used. [1] 

It allows the machine to penalize the weights 

of features which seem to have a lower 

impact on the output by allowing the 

machine to perceive the input of the model to 

have a higher variance and penalize any 

inputs whose covariance with the output 

target is low in comparison.  [1]  

L1 regularization assumes that some 

parameter weights have an optimal value of 

0, meaning they can be discarded as they 

have no impact on the output, thereby 

simplifying learning so that only the features 

with the most impact can be selected. [1]  

L2 Regularization   

 

L1 Regularization 

 
Figure 8. Regularization for in L2 and L1 , as shown in 

[1, Section 7.1]  
 



III. Implementation 

Using a pre-labeled sarcasm dataset, I hope 

to implement a model using convolutional 

neural network combined with an LSTM, as 

used in another text analysis dataset for 

analyzing sentiment of reviews in IMDB [5]. 

By starting from the model used in the 

previous text analysis study with an ReLU 

activation function, L2 regulizer, and a 

learning rate of 0.01 with decay, it might be 

possible to produce reasonable results; 

however, the impact of using the optimizer 

RMSprop over Adam or SGD was minimal. 

[5] These hyperparameter values, such as 

the optimizer, would need to be adjusted to 

find the optimal model to fit the dataset [1,5].  

A. Example Implementation 

Using Keras and Tensorflow on DirectML 

with an AMD GPU, I followed a guide to 

create an interactive webapp to compare the 

different effects changes in hyperparameters 

would have on the performance of a model 

that used the Cifar10 image dataset. [6] The 

visualization of the interactive web app 

using the streamlit library used in the 

example would help in determining which 

adjustments to make to optimize the model.   

IV. Conclusion 

A. Current State 

Progress on the sarcasm dataset itself has 

not been made, but the problems I had over 

the summer in getting Tensorflow to run at 

all have made significant progress in 

allowing me to move forward in 

implementation, albeit in less than ideal 

conditions for testing. 

B. Next Steps 

The first models for the sarcasm dataset 

need to be implemented and analyzed. A 

recent method for training models such as 

Google’s BERT might help reach optimal 

performance. 

I will need to practice using the relevant 

machine learning libraries for this type of 

dataset and become familiar with the 

different dependencies’ compatibility. 

C. Challenges 

After failing to get the Tensorflow machine 

learning library running over the summer, I 

discovered Tensorflow officially only 

supports NVIDIA graphics cards using 

CUDA. Due to lack of access to a computer 

with a NVIDIA graphics card or to the 

research lab at school, I had to find 

workarounds to get the Tensorflow library to 

work on any of the computers I have 

available.  

At the time of this writing, the AMD ROCm 

implementation of Tensorflow is in early 

development and has hardware limitations 

and runs only on Linux. There were 

difficulties in the running another 

Tensorflow alternative PlaidML.  

I found success in the recent release of 

DirectML by Microsoft, which is still in early 

development and does not support 

Tensorflow 2 at this time.  

Running code from examples which use 

deprecated dependencies or those with new 

package names has also been a challenge in 

importing the necessary python libraries. 
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